

Science Journal of Circuits, Systems and Signal Processing
2020; 9(1): 24-30

http://www.sciencepublishinggroup.com/j/cssp

doi: 10.11648/j.cssp.20200901.13

ISSN: 2326-9065 (Print); ISSN: 2326-9073 (Online)

Use of Virtual Forward Propagation Network Model to
Translate Analog Components

Muhammad Sana Ullah
1
, William Brickner

1
, Emadelden Fouad

2

1Department of Electrical and Computer Engineering, Florida Polytechnic University, Lakeland, USA
2Department of Natural Sciences, Florida Polytechnic University, Lakeland, USA

Email address:

To cite this article:
Muhammad Sana Ullah, William Brickner, Emadelden Fouad. Use of Virtual Forward Propagation Network Model to Translate Analog

Components. Science Journal of Circuits, Systems and Signal Processing. Vol. 9, No. 1, 2020, pp. 24-30. doi: 10.11648/j.cssp.20200901.13

Received: June 1, 2020; Accepted: June 17, 2020; Published: July 17, 2020

Abstract: Neural computing is an emerging research topic today due to its massive increase in demand and applications for

machine learning. In this virtual simulation research work, using a free software, a program has been trained a neural network

model and translate its functionality into the hardware. In the context of analog neural network, this research seeks to verify a

shift sigmoid function that can approximate the transfer function of CMOS inverter. By showing this approximation accurately

and reducing the number of components, it would help to implement the neural network based integrated chips. A conciliation

is selected for the distance matric of the proposed function. This distance metric between the given CMOS transfer function

and the shifted sigmoid function is minimized using the gradient descent. However, this approximate transfer function of

CMOS inverter is chosen to verify in a three-layer perceptron networks. The network topology randomly generates weights to

provide a diverse set of truth tables. We report two networks whose weights are chosen randomly using a back propagation

algorithm due to volatile nature of the network topology and the activation function. The results of this research conclude that

the transfer function of CMOS inverter is able to approximate the CMOS transfer function adequately for the purposes of these

perceptron networks.

Keywords: Analog Components, Artificial Neural Network, Machine Learning, Universal Gates, Virtual Network

1. Introduction

Neural network is a data structure that used in machine

learning, which are inspired by biology. Our ears lies the

most power dense information-processing unit that known to

science as the brain. If computers are able to do the

processing either as efficiently or as quickly as the brain, then

Von-Newman architectures would become outmoded [1, 2,

19]. The outside of neural networks of an analog forward

propagation network is an example of a software algorithm.

This algorithm is implemented in hardware and has an effect

in trainable ASIC devices for applications such as

autonomous vehicles, stock market predictions, and graphical

rendering. The output of a neural network-training algorithm

is a forward propagation network that is trained to

approximate the complex function. If these networks are

implemented in hardware, then this would be able to speed

up the processing and even possibly introduce a new class of

computer architecture [3, 4, 20].

Neurons in the brain are stimulated based on the activation

of other neurons in the brain cell. When a brain cell receives

enough stimulation from the adjacent brain cells, it will

broadcast a signal to its neighboring neurons that will

activate other neurons. This system of activating and

associate neurons are the fundamental mechanism in what

provides the functionality of the human brain [5, 6, 21, 22].

In software, this phenomenon is simulated as an artificial

neural network (ANN). These cascade structure simulate the

activation function. Besides, these can take on different

functions without the need for changing the topology of the

network and simulate using an ANN. In hardware, on the

other hand, an artificial perceptron can recreate functionally

by using operational amplifiers to add the incoming signals.

After combining with a CMOS inverter, the perceptron

would serve as an activation function and operational

amplifier to buffer the output. Connections between neurons

could weight by using resistors in conjunction with wires to

span different values [5, 7, 21].

 Science Journal of Circuits, Systems and Signal Processing 2020; 9(1): 24-30 25

In this virtual simulation research work, we propose the

idea that shows how a network of hardware components can

recreate the distinct forward propagation networks with only

changing the values of the resistances. To achieve this, firstly,

a software simulation environment helps to abstract the

hardware functionality in such a way that a network topology

and weights could select using a standard backpropagation

algorithm. Secondly, this trained network would put through

a translation function that maps the weights to corresponding

resistance values. After determining a feasible hardware

configuration, thirdly, the abstraction can translate into a

hardware tool to test the physics and accuracy of the

proposed model.

The rest of the paper is organized as follows. Section 2

presents the proposed model and discusses the

implementation technique systematically. Model accuracy

and limitations are discussed in Section 3. Finally, Section 4

is followed by a conclusion.

2. Methodology and Implementation of

the Proposed Model

The proposed model is a virtual representation of a

mathematical model that is constructed to predict the

observed values of an implementation of the corresponding

analog forward propagation network. In this case, the

function is chosen to reproduce an implementation of a

universal NAND
1
 logic gate and an arbitrary logic gate.

2.1. Activation Function Matching

Before creating a virtual network, an activation function

has chosen which can sufficiently recreate the system

function that occurs in its analog counterpart.

a) Choosing the Shape of Function: In the neural network,

the sigmoid function is used to implement the

differential properties of training network [6, 7]. The

proposed activation function derives from the shape of a

sigmoid function. However, it is shifted and stretched to

resemble the transfer function of CMOS inverter by

making the following transformations in (1).

���� � 1 � 	
	
��
����.�� (1)

To match the CMOS transfer function, the activation

function is matched to the midpoint of the graph (shown in

Figure 2) by subtracting 0.5 from the input � in the

exponential. The most effective way to match the slope of the

CMOS transfer function is to set the exponential function. By

making the negative value, the inverting nature of a CMOS

can be replicated by the sigmoid function. Specifically, the

magnitude is determined by finding the geometric mean of

minimized average of matching function and the minimized

median of the activation function. This is accounting for the

1
 Even though a NAND gate can be implemented using a single perceptron, in

order to test a prototype, there had to be at least 1 (one) hidden layer to observe

the accuracy of forward propagation through hidden layers.

average of data but not accounting for the center of a dataset.

Besides, it is rounded to the nearest integer. A sigmoid

function is chosen over simulating the actual transfer

function that is given by the Shockley diode equation. The

Shockley diode equation is easier to recreate in the Wolfram

Alpha API [9].

Figure 1. The absolute value of the difference of the two function being

matched over the spectrum of possible input values at α = 15.

Figure 2. A graph of the matched functions because of the gradient decent of

the average difference for side-by-side comparison.

Table 1. Truth table Distributions for Candidate networks.

Properties
Instances of truth table in the form F » f (0,0) f (0,1) f

(1,0) f (1,1)

Weights >.1

Figure 3

F » 0000 F » 0001 F » 0101 F » 0100

100000 0 0 0

F » 0010 F » 0011 F » 0111 F » 0110

0 0 0 0

F » 1010 F » 1011 F » 1111 F » 1110

0 0 0 0

F » 1000 F » 1001 F » 1101 F » 1100

0 0 0 0

|Weights >.1|

Figure 3

F » 0000 F » 0001 F » 0101 F » 0100

100000 0 0 0

F » 0010 F » 0011 F » 0111 F » 0110

0 0 0 0

F » 1010 F » 1011 F » 1111 F » 1110

0 0 0 0

F » 1000 F » 1001 F » 1101 F » 1100

0 0 0 0

No Negative

Weights

F » 0000 F » 0001 F » 0101 F » 0100

60206 1 4 32

26 Muhammad Sana Ullah et al.: Use of Virtual Forward Propagation Network Model to Translate Analog Components

Properties
Instances of truth table in the form F » f (0,0) f (0,1) f

(1,0) f (1,1)

Figure 4 F » 0010 F » 0011 F » 0111 F » 0110

31 3 13 15

F » 1010 F » 1011 F » 1111 F » 1110

62 5980 4623 1781

F » 1000 F » 1001 F » 1101 F » 1100

21125 1 57 6066

Half Negative

Weights

Figure 4

F » 0000 F » 0001 F » 0101 F » 0100

6156 651 1790 2623

F » 0010 F » 0011 F » 0111 F » 0110

697 3257 4757 296

F » 1010 F » 1011 F » 1111 F » 1110

1752 5376 63248 1825

F » 1000 F » 1001 F » 1101 F » 1100

1790 224 2241 3317

Figure 3. The initial proposed network topology. Forward propagation N+1

layers with each layer having two nodes. After a sufficient amount for time

the network failed to produce the desired output, after approximately 5

million times.

���� � ����� �5� ��
�� � ����� � (2)

In addition, the sigmoid function is easier to use in the

back-propagation model due to their derivative output of a

quadratic function.

b) Acquiring the CMOS Transfer Function: The method

chosen for acquiring the transfer function is to export

simulation data from the CMOS gate
2
 into a spreadsheet.

The advantage of the spreadsheet is that the large sets of

data are easy to manipulate and help to find the center

of a particular set of data. It is also a built-in feature of

the spreadsheet platform.

c) Define Matching Function: In this case, we define the

matching function by choosing an activation function of

(1) which is the approximate transfer function, ����,

over a given interval. Equation (2) can mathematically

describe this matching function, ���� , where ���� is

the probability distribution of a choosing input.

Matching function, ���� is optimized for minimizing

the average that is shown in Figure 1. This provides

data for the error distribution of all inputs. A side-by-

2
 The simulation recorded the output of a CMOS gate with inputs from 0 to 5

Volts, incrementing by 0.01 Volts.

side comparison of the matching function is displayed

in Figure 2. This signifies that the activation function is

a sufficient to approximate the transfer function.

Figure 4. The chosen network topology. The numbers on the connections

represent the weights of the network being simulated. This network uses

forward propagation to the N+1 layer, and the N+2 layer.

d) Gradient Descent: To find the minimum iteration of

matching function, ���� over the given interval, the

gradient decent is chosen for its speed and low overhead

programmatically. Gradient decent converges on a value

by traversing an arbitrary function with a step size that

is proportional to the slope of the function at a

particular point. This chosen point converges a critical

point when the step size of each iteration approaches

zero
3
. This sequence converges due to the slope of the

function being zero at local extrema (in this case the

minimum). The sequence produced by this algorithm

can be described by the following sequence
4
.

���x� � ���
 �!����
 (3)

To simplify �����, the slope is approximated by using the

formal definition of a derivative that shown in (3)
5
.

2.2. Cloud Implementation of the Virtual Network

After determining an appropriate activation function, the

proposed simulation is recreated the functionality of an

analog network. To quickly iterate, the forward propagation

of the analog network, a set of custom scripts are written in a

free version of the Wolfram Cloud API [9]. The principle

advantage of this custom script is to change the model so that

3
 The interval is the operating range of 0-5 Volts.

4
 The distribution f(x) is assumed to be uniform.

5
 The parameter being optimized from Eq. 1 is α. α0 is arbitrarily chosen to be

0.01 and Xo is arbitrarily chosen to be 13.
 7

h is chosen to be the arbitrarily small

value of 10E-13.

 Science Journal of Circuits, Systems and Signal Processing 2020; 9(1): 24-30 27

it could meet the specific growing needs of the project. The

Wolfram Cloud API provides free native functionality that is

useful for research such as advanced graphing and matrix

multiplication.

2.3. Propagating Forward

The desired weights can be added to a matrix using a

simple matrix multiplication to propagate the weights in the

virtual network. These values could be propagated forward

until an output is produced. The number of nodes depend on

how these matrices multiply and what values multiply [8-10].

The connection of those nodes and strength of those

connections are stored in matrices. The idea behind this

project is that all of these values are determined when a

network is trained for its purpose. A network can be treated

like a black box and used for its intended purpose.

Table 2. The Network Output.

Logic Function Input (V) Virtual (V) Analog (V)

Arbitrary

X: 0 Y: 0 4.9776 4.8862

X: 0 Y: 5 0.0126 0.1948

X: 5 Y: 0 4.1596 4.7837

X: 5 Y: 5 0.0014 0.0961

NAND

X: 0 Y: 0 5.0000 5.000

X: 0 Y: 5 4.9993 5.0000

X: 5 Y: 0 5.0000 5.0000

X: 5 Y: 5 0.0000 0.0000

2.4. Choosing a Propagating Network

After creating the scripts to preform matrix multiplication

and the activation function, a network has selected so that it

functions
6
 are in a non-arbitrary manner.

a) Selecting Weights: In light of maintaining an active

algorithm for determining a matrix, the weights on the

network are randomly generated
7
 by choosing a weight

8

using the distribution that shown in (4).

" � 	
� |1 $ � $ 10 (4)

The truth table of the randomly generated network is

verified against the desired output. If the generated network

does not match the desired output, a new network generates

until either a matching network is found, or the search lasted

longer than 1 minute
9
. Since the network is small enough and

the API ran fast enough, a brute force search is a viable

option to test/verify ~10,000 networks per second.

b) Robustness: The first iteration of the neural network

topology has one hidden layer, the second has two (see

Figure 3
10

). For both iterations, a brute force search is

6
 The desired functions are a NAND gate and an Arbitrary gate

7
 The distribution of X was even on the closed interval (1,10)

8
 This particular weight distribution was chosen because it reflects the inverse of

the operation that the weight is being used for, multiplication
9
 One possible explanation for this is the range of values the weights that are

allowed to take on but does not include zero (0).
10

 This number is chosen because the API kicks out the user if the run time of

their script exceeds 1 minute and this is about how many times the check runs in 1

minute.

run for a sufficiently long time that produce a set of

weights with the desired truth table. To determine the

ability of topology, a metric of a network topology is

assigned the random weights to produce a desired truth

table that has created. In light of this issue, the design of

network has to change for a better solution. However,

there is a need for a metric to evaluate an arbitrary

topology before choosing an arbitrary network. The

given name to this metric is robustness. Robustness is

related to the ability of a particular network topology to

produce a desired output by randomly assigning weights

to the network and is measured as follows: a) select a

network to test; b) generate an arbitrarily large number

of truth tables; c) store the number of times each

distinct truth table was observed; and d) examine the

distribution, respectively.

Figure 5. Model Comparison with network inputs and outputs distribution.

Some factors that drive into the selecting candidates for

different topologies and weight assignments that are taking

into account with the activation function has to be two stable

states and map to each other. To prevent the layers from

layers and always become alternating 1’s and 0’s, the

topology should propagate each layer to the N+1 layer, and

the N+2 layer (see Figure 4). The input propagates to the 1
st

and 2
nd

 layer, and the 1
st
 layer propagates to the second and

third layer and so on. This would be estimated to continue as

an activation function with � stable states where each layer

propagates through the & ' 1 layers. Typical truth table

distribution of proposed network topology for different

weights are shown in Table 1.

2.5. Virtual to Analog Translation

Multisim
11

 is chosen to simulate the physics of the

network that generates by the proposed model. The

advantage of Multisim is that device physics can be

accurately reproduced without the risk of breaking/damaging

parts. In addition, the cost of making modifications to the

circuit is negligible and the precision of components can be

11

 It should be noted that LTspice [12] is a free circuit simulation software that can

create networks in the same scope as was required for this project.

28 Muhammad Sana Ullah et al.: Use of Virtual Forward Propagation Network Model to Translate Analog Components

controlled.

a) Transfer Function: The model attempted to match an

activation function is the transfer function of a CMOS

inverter. In this case, we choose the CMOS inverter

because it is power efficient. In addition, it is produced

a symmetrical function. Therefore, the CMOS is

matched for symmetry. The output of the CMOS has

buffered so that the feedback loop of the OP-AMP does

not feedback into the output of the CMOS.

b) Summation of Inputs Signals: To simulate the summation

of weighted inputs, an OP-AMP summer is used in

conjunction with differential OP- AMPs
12

. This allow to

use the positive and negative weights for forward

propagation of the perceptron. Table 2 shows the output

of the proposed model for a virtual network verses the

output of the analog network. Table 2
13

 shows the

relationship of the values that is predicted by the

proposed model and observed by the analog network

simulation. Both Table 1 and Table 2 signifies that the

virtual simulation is sufficient for estimating the output.

3. Accuracy and Limitations of the

Proposed Model

The data that collect from the virtual network is used for a

reproduction function. Data is collected from the analog

simulation using voltage probes. A graph of predicted versus

observed values (shown Figure 5) is created from the data

that is collected. The correlation between the predicted inputs

and observed inputs is 0.9990. The correlation between the

predicted outputs and the observed outputs is 0.9992. Based

on the data in Table 1, Table 2, and Figure 5, the difference

between the proposed model and the observed network is

almost negligible which validate the proposed model.

Therefore, the proposed model is sufficient to accurately

predict the function of the analog network in a small network

using bounded values. The resources for this project are

limited and cost of parts need to low as much as possible in

all cases. If there are more resources available and any more

work are to be done to extend the project, these would be

following possible considerations.

3.1. Back Propagation

This project does not explore the prospect of back-

propagation. This is due to the overhear associated with

coding a back-propagation algorithm on an arbitrary network

and is forgone in favor of a randomly generated network.

Since a standard activation function is used to predict the

transfer function of CMOS inverter, the virtual network could

theoretically be trained using a standard back-propagation

algorithm [10, 13, 21, 22]. This training would need to be

12

 This could theoretically be implemented with a single differential OP-AMP.
13

 The value (9.04, 6.04) was removed because it was an anomaly caused by the

peak voltage of the OP-Amp only being 5V. As far as the CMOS is concerned, the

difference between an input of 9V and 6V is negligible and raising the voltage too

high can damage the CMOS.

tested for its rate of convergence, but other than there appears

to be no reason why it would not be effective as the

derivative which is still a linear combination of the output. If

the virtual back propagation is not sufficient using the chosen

virtual activation function, another possibility would be

changed the slope of the analog transfer function by altering

the attributes hardware components and then adjusting the

virtual model accordingly. For analog back propagation

development, it is possible that the derivative of the virtual

activation function could be used to estimate the derivative of

the transfer function using analog components. This could

potentially be the first step in implementing a new analog

back propagation algorithm.

3.2. Adjusting Resistances

In the scope of this project, we assumed the resistor with

values of three significant figures existed and could reliably

take on the values specified by the virtual to analog

translation with high precision. This is obviously an issue

when scaling due to the tolerance of resistors not being

negligible. Resistors are also expensive space-wise in IC’s.

This would lead to a need to identify a component that would

be able to adjust and store a resistance value such as a

potentiometer or a memristor [14-15]. To be feasible as a

programmable analog forward-propagation network, the

logistics of storing and distributing resistance values coupled

with the effects of noise on storing, setting, and distributing

this component would have to be explored.

3.3. Scaling

The size of this network does not allow for the possibility

of the deviation between the analog transfer function and the

virtual activation function to be compounded. If the deviation

is significant then the error could be reduced by virtually

hashing. A linear approximation of the analog transfer

function is implementing a back-propagation algorithm and

selecting different weight ranges. In addition, scaling would

create power consumption and speed that would need to be

considered. Particularly OP-AMPs are not necessarily power

efficient [13] and it might be possible to replace summers

and difference amplifiers with CMOS [15]. It is important to

change the way that could combine inputs of activation

function which could be non-linear so that a different

component could be used.

3.4. New Computer Architecture

If a programmable version of the forward propagation

network could be implemented, then it is possible for some

new computer architectures to be explored [3, 21, 22]. The

idea here is that a chip could be included in the CPU which

would be programmable. Network. Configurations for this

analog network could be processed in software and then

stored in a large repository that has to be accessed via the

internet or to be stored locally. These functions not only

determine theoretically but also locally. This programmable

network would allow the designer an application specific

 Science Journal of Circuits, Systems and Signal Processing 2020; 9(1): 24-30 29

integrated chip that could be included as a part of a software

implementation [16, 18, 21].

4. Conclusion

This paper implemented a universal logic NAND gate and

an arbitrary function using neural network. To match the

sigmoid function with the transfer function, a few different

distance metrics are chosen, and the distance is minimized

using a gradient descent algorithm in a spreadsheet software.

The spreadsheet software is used to simulate the values of a

CMOS transfer function provided by hardware simulation

software. Even though a few different metrics are pursued to

minimize the distance, the changing of the chosen metric

does not significantly affect the shape of the error function

over the set of expected input values. Once a candidate

sigmoid is selected, a set of networks are generated in

software that is used the sigmoid as an activation function for

the output. This perceptron network with sigmoid activation

function is compared to a network that consist of op-amps for

summation of the inputs, and CMOS for the transfer function

of the network. This hardware is determined to be

sufficiently close to the software for this particular size of

perceptron network.

References

[1] T. Tuma, A. Pantazi, M. Gallo, A. Sebastian and E. Eleftheriou,
“Stochastic phase-change neurons,” Nature Nanotechnology,
vol. 11, pp. 693-699, May 2016.

[2] C. D. Wright, “Phase-change devices: Crystal-clear neuronal
computing,” Nature Nanotechnology, vol. 11, pp. 655–656,
May 2016.

[3] I. Aleksander, Neural computing architectures: the design of
brain-like machines, London: North Oxford Academic, 1989.

[4] S. Furber and S. Temple, “Neural systems engineering,”
Journal of The Royal Society Interface, vol. 4, no. 13, pp.
193–206, 2006.

[5] H. P. Graf, L. D. Jackel and W. E. Hubbard, “VLSI
Implementation of a neural network model,” Computer, vol.
21, no. 3, pp. 41-49, March 1988.

[6] A. E. Pereda, “Electrical synapses and their functional
interactions with chemical synapses,” Nature Reviews
Neuroscience, vol. 15, no. 4, pp. 250-263, April 2014.

[7] G. Gomes, T. Ludermir and L. Lima, “Comparison of new
activation functions in neural network for forecasting financial
time series,” Neural Computing and Applications, vol. 20, no.
3, pp. 417-439, April 2011.

[8] B. M. Wilamowski, J. Binfet and M. O. Kaynak, “VLSI
Implementation of Neural Networks,” International Journal of
Neural Systems, vol. 10, no. 3, pp. 191-197, June 2000.

[9] R. E. Maeder, The Mathematica Programmer, Academic Press,
Inc., 1994.

[10] K. Hirasawa, M. Ohbayashi, M. Koga and M. Harada,
“Forward propagation universal learning network,” IEEE
International Conference on Neural Networks, Washington,
DC, USA, 3-6 June 1996.

[11] M. Jabri, S. Pickard, P. Leong, G. Rigby, J. Jiang, B. Flower
and P. Henderson,“VLSI implementation of neural networks
with application to signal processing,” IEEE International
Symposium on Circuits and Systems, pp. 1275-1278, 11-14
June 1991.

[12] X. Li, J. Qin, B. Huang, X. Zhang and J. B. Bernstein, “A new
SPICE reliability simulation method for deep submicrometer
CMOS VLSI circuits,” IEEE Transactions on Device and
Materials Reliability, Vol. 6, No. 2, pp. 247-257, June 2006.

[13] M. Valle, “Analog VLSI Implementation of Artificial Neural
Networks with Supervised On-Chip Learning,” Analog
Integrated Circuits and Signal Processing, vol. 33, no. 3, pp.
263-287, December 2002.

[14] B. Vines and M. H. Rashid, “Memristors: The fourth
fundamental circuit element,” IEEE International Conference
on Electrical and Electronics Engineering, Bursa, Turkey, 5-8
Nov. 2009.

[15] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu and W.
J. Gross, “VLSI Implementation of Deep Neural Network
Using Integral Stochastic Computing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. PP, no. 99,
pp. 1-12, 2017.

[16] V. Balan, “A low-voltage regulator circuit with self-bias to
improve accuracy,” IEEE Journal of Solid-State Circuits, vol.
38, no. 2, pp. 365-368, Feb 2003.

[17] A. K. Shrinath, “Analog VLSI Implementation of Neural
Network Architecture,” International Journal of Science and
Research, vol. 4, no. 2, pp. 653-656, February 2015.

[18] B. Razavi, Design of Analog CMOS Integrated Circuits,
Second Edition, Mc Graw Hill Education, 2016.

[19] J. Cho, Y. Jung, S. Lee and Y. Jung, “VLSI Implementation of
Restricted Coulomb Energy Neural Network with Improved
Learning Scheme,” Electronics, vol. 8, no. 563, pp. 1-13, May
2019.

[20] M. Yamaguchi, G. Iwamoto, H. Tamukoh and T. Morie, “An
Energy-efficient Time-domain Analog VLSI Neural Network
Processor based on a Pulse-width Modulation Approach,”
Computer Science, Emerging Technologies, Cornell
University, pp. 1-13, February 2019.

[21] Q. Wang, H. Tamukoh and T. Morie, “A Time-domain Analog
Weighted – sum Calculation Model for Extremely Low Power
VLSI Implementation of Multi-layer Neural Networks,”
Computer Science, Emerging Technologies, Cornell
University, October 2018.

[22] S. Mada and S. Mandalika, "Analog Implementation of
Artificial Neural Networks Using Forward Only
Computation," Asia Modelling Symposium (AMS), Kota
Kinabalu, 4-6 December 2017, pp. 3-9.

30 Muhammad Sana Ullah et al.: Use of Virtual Forward Propagation Network Model to Translate Analog Components

Biography

Muhammad Sana Ullah (S’13-M’17) received the B. S. and M. S. degree in Electrical and Computer

Engineering from Chittagong University of Engineering and Technology and Purdue University Northwest.

Recently, he has finished his Ph.D. degree in Electrical and Computer Engineering from the University of

Missouri-Kansas City and joined as an Assistant Professor of Electrical and Computer Engineering at

Florida Polytechnic University. His specific research focuses are modeling of RLC interconnects and RF

interconnect in high-density integrated circuits and investigation of a tunneling device based on graphene,

carbon nano tube and other emerging 2D nanomaterials.

William Brickner (SM’17-) studied and recently graduate for the degree of Bachelor of Science in

Computer Engineering at Florida Polytechnic University, Lakeland, FL. He is specialized on digital logic

design. Now for his master’s degree in electrical engineering, he attended the Colorado School of Mines

where he is studying in the field of Electrical Engineering with Control Systems and Signal Processing.

His research interest includes on virtual simulation network, power aware design, VLSI Design, analog

neural network, digital systems design, control systems and signal processing. His dream is to make a fully

functional analog neural network.

Emadelden Fouad received his B. Sc and M. Sc degree with Theoretical Physics from Cairo University,

Egypt in 1996 and 2001 respectively. Emadelden also finished his PhD with theoretical Nano device from

Cairo University, Egypt in 2005. Previously he worked as a teaching assistant and instructor with the

department of Physics at Cairo University. Currently he is working as an assistant professor of physics with

the department of natural science at Florida Polytechnic University. His research interest includes but not

limited to quantum transport characteristics of energy efficient devices, Electromagnetic properties of type II

superconductors and emerging nanomaterials.

