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Abstract: Neural computing is an emerging research topic today due to its massive increase in demand and applications for 

machine learning. In this virtual simulation research work, using a free software, a program has been trained a neural network 

model and translate its functionality into the hardware. In the context of analog neural network, this research seeks to verify a 

shift sigmoid function that can approximate the transfer function of CMOS inverter. By showing this approximation accurately 

and reducing the number of components, it would help to implement the neural network based integrated chips. A conciliation 

is selected for the distance matric of the proposed function. This distance metric between the given CMOS transfer function 

and the shifted sigmoid function is minimized using the gradient descent. However, this approximate transfer function of 

CMOS inverter is chosen to verify in a three-layer perceptron networks. The network topology randomly generates weights to 

provide a diverse set of truth tables. We report two networks whose weights are chosen randomly using a back propagation 

algorithm due to volatile nature of the network topology and the activation function. The results of this research conclude that 

the transfer function of CMOS inverter is able to approximate the CMOS transfer function adequately for the purposes of these 

perceptron networks. 
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1. Introduction 

Neural network is a data structure that used in machine 

learning, which are inspired by biology. Our ears lies the 

most power dense information-processing unit that known to 

science as the brain. If computers are able to do the 

processing either as efficiently or as quickly as the brain, then 

Von-Newman architectures would become outmoded [1, 2, 

19]. The outside of neural networks of an analog forward 

propagation network is an example of a software algorithm. 

This algorithm is implemented in hardware and has an effect 

in trainable ASIC devices for applications such as 

autonomous vehicles, stock market predictions, and graphical 

rendering. The output of a neural network-training algorithm 

is a forward propagation network that is trained to 

approximate the complex function. If these networks are 

implemented in hardware, then this would be able to speed 

up the processing and even possibly introduce a new class of 

computer architecture [3, 4, 20]. 

Neurons in the brain are stimulated based on the activation 

of other neurons in the brain cell. When a brain cell receives 

enough stimulation from the adjacent brain cells, it will 

broadcast a signal to its neighboring neurons that will 

activate other neurons. This system of activating and 

associate neurons are the fundamental mechanism in what 

provides the functionality of the human brain [5, 6, 21, 22]. 

In software, this phenomenon is simulated as an artificial 

neural network (ANN). These cascade structure simulate the 

activation function. Besides, these can take on different 

functions without the need for changing the topology of the 

network and simulate using an ANN. In hardware, on the 

other hand, an artificial perceptron can recreate functionally 

by using operational amplifiers to add the incoming signals. 

After combining with a CMOS inverter, the perceptron 

would serve as an activation function and operational 

amplifier to buffer the output. Connections between neurons 

could weight by using resistors in conjunction with wires to 

span different values [5, 7, 21]. 
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In this virtual simulation research work, we propose the 

idea that shows how a network of hardware components can 

recreate the distinct forward propagation networks with only 

changing the values of the resistances. To achieve this, firstly, 

a software simulation environment helps to abstract the 

hardware functionality in such a way that a network topology 

and weights could select using a standard backpropagation 

algorithm. Secondly, this trained network would put through 

a translation function that maps the weights to corresponding 

resistance values. After determining a feasible hardware 

configuration, thirdly, the abstraction can translate into a 

hardware tool to test the physics and accuracy of the 

proposed model. 

The rest of the paper is organized as follows. Section 2 

presents the proposed model and discusses the 

implementation technique systematically. Model accuracy 

and limitations are discussed in Section 3. Finally, Section 4 

is followed by a conclusion. 

2. Methodology and Implementation of 

the Proposed Model 

The proposed model is a virtual representation of a 

mathematical model that is constructed to predict the 

observed values of an implementation of the corresponding 

analog forward propagation network. In this case, the 

function is chosen to reproduce an implementation of a 

universal NAND
1
 logic gate and an arbitrary logic gate. 

2.1. Activation Function Matching 

Before creating a virtual network, an activation function 

has chosen which can sufficiently recreate the system 

function that occurs in its analog counterpart. 

a) Choosing the Shape of Function: In the neural network, 

the sigmoid function is used to implement the 

differential properties of training network [6, 7]. The 

proposed activation function derives from the shape of a 

sigmoid function. However, it is shifted and stretched to 

resemble the transfer function of CMOS inverter by 

making the following transformations in (1). 

���� �  1 � 	
	
��
����.��                          (1) 

To match the CMOS transfer function, the activation 

function is matched to the midpoint of the graph (shown in 

Figure 2) by subtracting 0.5 from the input �  in the 

exponential. The most effective way to match the slope of the 

CMOS transfer function is to set the exponential function. By 

making the negative value, the inverting nature of a CMOS 

can be replicated by the sigmoid function. Specifically, the 

magnitude is determined by finding the geometric mean of 

minimized average of matching function and the minimized 

median of the activation function. This is accounting for the 

                                                             
1
 Even though a NAND gate can be implemented using a single perceptron, in 

order to test a prototype, there had to be at least 1 (one) hidden layer to observe 

the accuracy of forward propagation through hidden layers. 

average of data but not accounting for the center of a dataset. 

Besides, it is rounded to the nearest integer. A sigmoid 

function is chosen over simulating the actual transfer 

function that is given by the Shockley diode equation. The 

Shockley diode equation is easier to recreate in the Wolfram 

Alpha API [9]. 

 

Figure 1. The absolute value of the difference of the two function being 

matched over the spectrum of possible input values at α = 15. 

 

Figure 2. A graph of the matched functions because of the gradient decent of 

the average difference for side-by-side comparison. 

Table 1. Truth table Distributions for Candidate networks. 

Properties 
Instances of truth table in the form F » f (0,0) f (0,1) f 

(1,0) f (1,1) 

Weights >.1 

Figure 3 

F » 0000 F » 0001 F » 0101 F » 0100 

100000 0 0 0 

F » 0010 F » 0011 F » 0111 F » 0110 

0 0 0 0 

F » 1010 F » 1011 F » 1111 F » 1110 

0 0 0 0 

F » 1000 F » 1001 F » 1101 F » 1100 

0 0 0 0 

|Weights >.1| 

Figure 3 

F » 0000 F » 0001 F » 0101 F » 0100 

100000 0 0 0 

F » 0010 F » 0011 F » 0111 F » 0110 

0 0 0 0 

F » 1010 F » 1011 F » 1111 F » 1110 

0 0 0 0 

F » 1000 F » 1001 F » 1101 F » 1100 

0 0 0 0 

No Negative 

Weights 

F » 0000 F » 0001 F » 0101 F » 0100 

60206 1 4 32 
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Properties 
Instances of truth table in the form F » f (0,0) f (0,1) f 

(1,0) f (1,1) 

Figure 4 F » 0010 F » 0011 F » 0111 F » 0110 

31 3 13 15 

F » 1010 F » 1011 F » 1111 F » 1110 

62 5980 4623 1781 

F » 1000 F » 1001 F » 1101 F » 1100 

21125 1 57 6066 

Half Negative 

Weights  

Figure 4 

F » 0000 F » 0001 F » 0101 F » 0100 

6156 651 1790 2623 

F » 0010 F » 0011 F » 0111 F » 0110 

697 3257 4757 296 

F » 1010 F » 1011 F » 1111 F » 1110 

1752 5376 63248 1825 

F » 1000 F » 1001 F » 1101 F » 1100 

1790 224 2241 3317 

 

Figure 3. The initial proposed network topology. Forward propagation N+1 

layers with each layer having two nodes. After a sufficient amount for time 

the network failed to produce the desired output, after approximately 5 

million times. 

���� � ����� �5� ��
�� � ����� �                   (2) 

In addition, the sigmoid function is easier to use in the 

back-propagation model due to their derivative output of a 

quadratic function. 

b) Acquiring the CMOS Transfer Function: The method 

chosen for acquiring the transfer function is to export 

simulation data from the CMOS gate
2
 into a spreadsheet. 

The advantage of the spreadsheet is that the large sets of 

data are easy to manipulate and help to find the center 

of a particular set of data. It is also a built-in feature of 

the spreadsheet platform. 

c) Define Matching Function: In this case, we define the 

matching function by choosing an activation function of 

(1) which is the approximate transfer function, ����, 

over a given interval. Equation (2) can mathematically 

describe this matching function, ���� , where ����  is 

the probability distribution of a choosing input. 

Matching function, ���� is optimized for minimizing 

the average that is shown in Figure 1. This provides 

data for the error distribution of all inputs. A side-by-

                                                             
2
 The simulation recorded the output of a CMOS gate with inputs from 0 to 5 

Volts, incrementing by 0.01 Volts. 

side comparison of the matching function is displayed 

in Figure 2. This signifies that the activation function is 

a sufficient to approximate the transfer function. 

 

Figure 4. The chosen network topology. The numbers on the connections 

represent the weights of the network being simulated. This network uses 

forward propagation to the N+1 layer, and the N+2 layer. 

d) Gradient Descent: To find the minimum iteration of 

matching function, ����  over the given interval, the 

gradient decent is chosen for its speed and low overhead 

programmatically. Gradient decent converges on a value 

by traversing an arbitrary function with a step size that 

is proportional to the slope of the function at a 

particular point. This chosen point converges a critical 

point when the step size of each iteration approaches 

zero
3
. This sequence converges due to the slope of the 

function being zero at local extrema (in this case the 

minimum). The sequence produced by this algorithm 

can be described by the following sequence
4
. 

���x� �  ���
 �!����
                              (3) 

To simplify �����, the slope is approximated by using the 

formal definition of a derivative that shown in (3)
5
. 

2.2. Cloud Implementation of the Virtual Network 

After determining an appropriate activation function, the 

proposed simulation is recreated the functionality of an 

analog network. To quickly iterate, the forward propagation 

of the analog network, a set of custom scripts are written in a 

free version of the Wolfram Cloud API [9]. The principle 

advantage of this custom script is to change the model so that 

                                                             
3
 The interval is the operating range of 0-5 Volts. 

4
 The distribution f(x) is assumed to be uniform. 

5
 The parameter being optimized from Eq. 1 is α. α0 is arbitrarily chosen to be 

0.01 and Xo is arbitrarily chosen to be 13.
 7

h is chosen to be the arbitrarily small 

value of 10E-13.  
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it could meet the specific growing needs of the project. The 

Wolfram Cloud API provides free native functionality that is 

useful for research such as advanced graphing and matrix 

multiplication. 

2.3. Propagating Forward 

The desired weights can be added to a matrix using a 

simple matrix multiplication to propagate the weights in the 

virtual network. These values could be propagated forward 

until an output is produced. The number of nodes depend on 

how these matrices multiply and what values multiply [8-10]. 

The connection of those nodes and strength of those 

connections are stored in matrices. The idea behind this 

project is that all of these values are determined when a 

network is trained for its purpose. A network can be treated 

like a black box and used for its intended purpose. 

Table 2. The Network Output. 

Logic Function Input (V) Virtual (V) Analog (V) 

Arbitrary 

X: 0 Y: 0 4.9776 4.8862 

X: 0 Y: 5 0.0126 0.1948 

X: 5 Y: 0 4.1596 4.7837 

X: 5 Y: 5 0.0014 0.0961 

NAND 

X: 0 Y: 0 5.0000 5.000 

X: 0 Y: 5 4.9993 5.0000 

X: 5 Y: 0 5.0000 5.0000 

X: 5 Y: 5 0.0000 0.0000 

2.4. Choosing a Propagating Network 

After creating the scripts to preform matrix multiplication 

and the activation function, a network has selected so that it 

functions
6
 are in a non-arbitrary manner. 

a) Selecting Weights: In light of maintaining an active 

algorithm for determining a matrix, the weights on the 

network are randomly generated
7
 by choosing a weight

8
 

using the distribution that shown in (4). 

" � 	
�  |1 $ � $ 10                      (4) 

The truth table of the randomly generated network is 

verified against the desired output. If the generated network 

does not match the desired output, a new network generates 

until either a matching network is found, or the search lasted 

longer than 1 minute
9
. Since the network is small enough and 

the API ran fast enough, a brute force search is a viable 

option to test/verify ~10,000 networks per second. 

b) Robustness: The first iteration of the neural network 

topology has one hidden layer, the second has two (see 

Figure 3
10

). For both iterations, a brute force search is 

                                                             
6
 The desired functions are a NAND gate and an Arbitrary gate 

7
 The distribution of X was even on the closed interval (1,10) 

8
 This particular weight distribution was chosen because it reflects the inverse of 

the operation that the weight is being used for, multiplication 
9
 One possible explanation for this is the range of values the weights that are 

allowed to take on but does not include zero (0). 
10

 This number is chosen because the API kicks out the user if the run time of 

their script exceeds 1 minute and this is about how many times the check runs in 1 

minute. 

run for a sufficiently long time that produce a set of 

weights with the desired truth table. To determine the 

ability of topology, a metric of a network topology is 

assigned the random weights to produce a desired truth 

table that has created. In light of this issue, the design of 

network has to change for a better solution. However, 

there is a need for a metric to evaluate an arbitrary 

topology before choosing an arbitrary network. The 

given name to this metric is robustness. Robustness is 

related to the ability of a particular network topology to 

produce a desired output by randomly assigning weights 

to the network and is measured as follows: a) select a 

network to test; b) generate an arbitrarily large number 

of truth tables; c) store the number of times each 

distinct truth table was observed; and d) examine the 

distribution, respectively. 

 
Figure 5. Model Comparison with network inputs and outputs distribution. 

Some factors that drive into the selecting candidates for 

different topologies and weight assignments that are taking 

into account with the activation function has to be two stable 

states and map to each other. To prevent the layers from 

layers and always become alternating 1’s and 0’s, the 

topology should propagate each layer to the N+1 layer, and 

the N+2 layer (see Figure 4). The input propagates to the 1
st
 

and 2
nd

 layer, and the 1
st
 layer propagates to the second and 

third layer and so on. This would be estimated to continue as 

an activation function with � stable states where each layer 

propagates through the & ' 1  layers. Typical truth table 

distribution of proposed network topology for different 

weights are shown in Table 1. 

2.5. Virtual to Analog Translation 

Multisim
11

 is chosen to simulate the physics of the 

network that generates by the proposed model. The 

advantage of Multisim is that device physics can be 

accurately reproduced without the risk of breaking/damaging 

parts. In addition, the cost of making modifications to the 

circuit is negligible and the precision of components can be 

                                                             
11

 It should be noted that LTspice [12] is a free circuit simulation software that can 

create networks in the same scope as was required for this project. 
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controlled. 

a) Transfer Function: The model attempted to match an 

activation function is the transfer function of a CMOS 

inverter. In this case, we choose the CMOS inverter 

because it is power efficient. In addition, it is produced 

a symmetrical function. Therefore, the CMOS is 

matched for symmetry. The output of the CMOS has 

buffered so that the feedback loop of the OP-AMP does 

not feedback into the output of the CMOS. 

b) Summation of Inputs Signals: To simulate the summation 

of weighted inputs, an OP-AMP summer is used in 

conjunction with differential OP- AMPs
12

. This allow to 

use the positive and negative weights for forward 

propagation of the perceptron. Table 2 shows the output 

of the proposed model for a virtual network verses the 

output of the analog network. Table 2
13

 shows the 

relationship of the values that is predicted by the 

proposed model and observed by the analog network 

simulation. Both Table 1 and Table 2 signifies that the 

virtual simulation is sufficient for estimating the output. 

3. Accuracy and Limitations of the 

Proposed Model 

The data that collect from the virtual network is used for a 

reproduction function. Data is collected from the analog 

simulation using voltage probes. A graph of predicted versus 

observed values (shown Figure 5) is created from the data 

that is collected. The correlation between the predicted inputs 

and observed inputs is 0.9990. The correlation between the 

predicted outputs and the observed outputs is 0.9992. Based 

on the data in Table 1, Table 2, and Figure 5, the difference 

between the proposed model and the observed network is 

almost negligible which validate the proposed model. 

Therefore, the proposed model is sufficient to accurately 

predict the function of the analog network in a small network 

using bounded values. The resources for this project are 

limited and cost of parts need to low as much as possible in 

all cases. If there are more resources available and any more 

work are to be done to extend the project, these would be 

following possible considerations. 

3.1. Back Propagation 

This project does not explore the prospect of back-

propagation. This is due to the overhear associated with 

coding a back-propagation algorithm on an arbitrary network 

and is forgone in favor of a randomly generated network. 

Since a standard activation function is used to predict the 

transfer function of CMOS inverter, the virtual network could 

theoretically be trained using a standard back-propagation 

algorithm [10, 13, 21, 22]. This training would need to be 

                                                             
12

 This could theoretically be implemented with a single differential OP-AMP. 
13

 The value (9.04, 6.04) was removed because it was an anomaly caused by the 

peak voltage of the OP-Amp only being 5V. As far as the CMOS is concerned, the 

difference between an input of 9V and 6V is negligible and raising the voltage too 

high can damage the CMOS. 

tested for its rate of convergence, but other than there appears 

to be no reason why it would not be effective as the 

derivative which is still a linear combination of the output. If 

the virtual back propagation is not sufficient using the chosen 

virtual activation function, another possibility would be 

changed the slope of the analog transfer function by altering 

the attributes hardware components and then adjusting the 

virtual model accordingly. For analog back propagation 

development, it is possible that the derivative of the virtual 

activation function could be used to estimate the derivative of 

the transfer function using analog components. This could 

potentially be the first step in implementing a new analog 

back propagation algorithm. 

3.2. Adjusting Resistances 

In the scope of this project, we assumed the resistor with 

values of three significant figures existed and could reliably 

take on the values specified by the virtual to analog 

translation with high precision. This is obviously an issue 

when scaling due to the tolerance of resistors not being 

negligible. Resistors are also expensive space-wise in IC’s. 

This would lead to a need to identify a component that would 

be able to adjust and store a resistance value such as a 

potentiometer or a memristor [14-15]. To be feasible as a 

programmable analog forward-propagation network, the 

logistics of storing and distributing resistance values coupled 

with the effects of noise on storing, setting, and distributing 

this component would have to be explored. 

3.3. Scaling 

The size of this network does not allow for the possibility 

of the deviation between the analog transfer function and the 

virtual activation function to be compounded. If the deviation 

is significant then the error could be reduced by virtually 

hashing. A linear approximation of the analog transfer 

function is implementing a back-propagation algorithm and 

selecting different weight ranges. In addition, scaling would 

create power consumption and speed that would need to be 

considered. Particularly OP-AMPs are not necessarily power 

efficient [13] and it might be possible to replace summers 

and difference amplifiers with CMOS [15]. It is important to 

change the way that could combine inputs of activation 

function which could be non-linear so that a different 

component could be used. 

3.4. New Computer Architecture 

If a programmable version of the forward propagation 

network could be implemented, then it is possible for some 

new computer architectures to be explored [3, 21, 22]. The 

idea here is that a chip could be included in the CPU which 

would be programmable. Network. Configurations for this 

analog network could be processed in software and then 

stored in a large repository that has to be accessed via the 

internet or to be stored locally. These functions not only 

determine theoretically but also locally. This programmable 

network would allow the designer an application specific 
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integrated chip that could be included as a part of a software 

implementation [16, 18, 21]. 

4. Conclusion 

This paper implemented a universal logic NAND gate and 

an arbitrary function using neural network. To match the 

sigmoid function with the transfer function, a few different 

distance metrics are chosen, and the distance is minimized 

using a gradient descent algorithm in a spreadsheet software. 

The spreadsheet software is used to simulate the values of a 

CMOS transfer function provided by hardware simulation 

software. Even though a few different metrics are pursued to 

minimize the distance, the changing of the chosen metric 

does not significantly affect the shape of the error function 

over the set of expected input values. Once a candidate 

sigmoid is selected, a set of networks are generated in 

software that is used the sigmoid as an activation function for 

the output. This perceptron network with sigmoid activation 

function is compared to a network that consist of op-amps for 

summation of the inputs, and CMOS for the transfer function 

of the network. This hardware is determined to be 

sufficiently close to the software for this particular size of 

perceptron network. 
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